Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.142
Filtrar
1.
Front Nutr ; 11: 1369950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571748

RESUMO

Starch is a primary energy storage for plants, making it an essential component of many plant-based foods consumed today. Resistant starch (RS) refers to those starch fractions that escape digestion in the small intestine and reach the colon where they are fermented by the microflora. RS has been repeatedly reported as having benefits on health, but ensuring that its content remains in food processing may be challenging. The present work focuses on the impact RS on health and explores the different processes that may influence its presence in foods, thus potentially interfering with these effects. Clinical evidence published from 2010 to 2023 and studying the effect of RS on health parameters in adult populations, were identified, using PUBMED/Medline and Cochrane databases. The search focused as well on observational studies related to the effect of food processes on RS content. While processes such as milling, fermentation, cooking and heating seem to have a deleterious influence on RS content, other processes, such as cooling, cooking time, storage time, or water content, may positively impact its presence. Regarding the influence on health parameters, there is a body of evidence suggesting an overall significant beneficial effect of RS, especially type 1 and 2, on several health parameters such as glycemic response, insulin resistance index, bowel function or inflammatory markers. Effects are more substantiated in individuals suffering from metabolic diseases. The effects of RS may however be exerted differently depending on the type. A better understanding of the influence of food processes on RS can guide the development of dietary intake recommendations and contribute to the development of food products rich in RS.

2.
Environ Monit Assess ; 196(5): 426, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573396

RESUMO

This article, based on OMI data products, utilizes spatial distribution, ozone-sensitive control areas, Pearson correlation methods, and the Ben-MAP model to study the changes in ozone column concentration from 2018 to 2022, along with the influencing factors and the health of populations exposed to ozone. The findings suggest a spatial variation in the ozone column concentration within the study area, with an increasing trend observed from west to east and from south to north. Over time, the ozone column concentration exhibits an initial increase followed by a subsequent decrease, with the peak concentration observed in 2019 at 37.45 DU and the nadir recorded in 2022 at 33.10 DU. The monthly mean distribution exhibits an inverted V-shaped pattern during the warm season from April to September, with a peak in July (46.71 DU) and a trough in April (35.29 DU). The Hetao Plain Oasis area is primarily a NOx control area in sensitive control areas. The concentrations of O3 and precursor HCHO exhibited significant positive correlations with vegetation index and air temperature, while showing significant negative correlations with wind speed and air pressure. The precursor NO2, in contrast, exhibited a significant negative correlation with both the vegetation index and relative humidity. Based on the ground-based monitoring sites and analysis of human health benefits, the study area witnessed 1944.45 deaths attributed to warm season O3 exposure in 2018, with a subsequent reduction in premature deaths by 149.7, 588.2, and 231.75 for the years 2019 to 2021 respectively when compared to the baseline year. In 2021, the observed decrease in warm-season O3 concentration within that region compared to 2018 resulted in a significant reduction, leading to the prevention of 126 premature deaths.


Assuntos
Monitoramento Ambiental , Ozônio , Humanos , Mortalidade Prematura , Ozônio/toxicidade , Estações do Ano , Temperatura
3.
J Biophotonics ; : e202400023, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576140

RESUMO

Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.

4.
Ecotoxicol Environ Saf ; 276: 116293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599155

RESUMO

Elevated concentrations of As, Cr, Cu, Ni, Pb, V and Zn in topsoils in Belfast, Northern Ireland have been found to exceed assessment criteria in the city and therefore may pose a risk to human health. Most generic assessment criteria (GAC) for potentially toxic elements (PTEs) in soils assume PTEs are 100% bioavailable to humans. Here we use in-vitro oral bioaccessibility testing using the Unified BARGE method (UBM) to measure what proportion of soil contamination dissolves in the digestive tract and therefore is available for absorption by the body. This study considers how PTE bioaccessibility in soils varies spatially across urban areas and refines human health risk assessment for these PTEs using site specific oral bioaccessibility results to present the first regional assessment of risk that incorporates bioaccessibility testing. A total of 103 urban soil samples were selected for UBM testing. Results showed low bioaccessible fraction (BAF) for the PTEs from geogenic sources: Cr (0.45-5.9%), Ni (1.1-46.3%) and V (2.2-23.9%). Higher BAF values were registered for PTEs from anthropogenic sources: As (8.0-86.9%), Cu (3.4-67.8%), Pb (9.1-106.2%) and Zn (2.4-77.5%). Graphs of bioaccessibility adjusted assessment criteria (BAAC) were derived for each urban land use type and PTE. These provide a visual representation of the significance of oral bioaccessibility when deriving BAAC and how this is affected by 1) dominant exposure pathways for each land use and 2) relative harm posed from exposure to PTEs via each pathway, allowing oral bioaccessibility research to be targeted to contaminants and pathways that most significantly impact risk assessment. Pb was the most widespread contaminant with 16.5% of sites exceeding the Pb GAC. Applying BAAC did not significantly change risk evaluation for these samples as many had Pb BAF>50%. In contrast, all samples that exceeded the As GAC were found to no longer exceed a minimal level of risk when oral bioaccessibility was considered. Oral bioaccessibility testing resulted in a 45% reduction in the number of sites identified as posing a potential risk to human health.

5.
Environ Geochem Health ; 46(5): 173, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592592

RESUMO

Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.


Assuntos
Água Subterrânea , Nitratos , Criança , Feminino , Lactente , Masculino , Humanos , Teorema de Bayes , Ecossistema , Fertilizantes , Esterco , Esgotos , China , Isótopos , Nitrogênio , Solo
6.
J Sci Food Agric ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597303

RESUMO

BACKGROUND: Including seaweed in cattle feed has gained increased interest, but it is important to take into account that the concentration of toxic metals, especially arsenic, is high in seaweed. This study investigated the arsenic species in milk from seaweed-fed cows. RESULTS: Total arsenic in milk of control diets (9.3 ± 1.0 µg As kg-1, n = 4, dry mass) were significantly higher than seaweed-based diet (high-seaweed diet: 7.8 ± 0.4 µg As kg-1, p < 0.05, n = 4, dry mass; low seaweed diet: 6.2 ± 1.0 µg As kg-1, p < 0.01, n = 4, dry mass). Arsenic speciation showed that the main species present were arsenobetaine (AB) and arsenate (As(V)) (37% and 24% of the total arsenic, respectively). Trace amounts of dimethylarsinic acid (DMA) and arsenocholine (AC) have also been detected in milk. Apart from arsenate being significantly lower (p < 0.001) in milk from seaweed-fed cows, than in milk from the control group, other arsenic species showed no significant differences between groups. CONCLUSION: The lower total arsenic and arsenate in seaweed diet groups indicates a possible competition of uptake between arsenate and phosphate and the presence of AC indicates a reduction of AB occurred in the digestive tract. Feeding a seaweed blend (91% Ascophyllum nodosum and 9% Laminaria digitata) does not raise As-related safety concerns for milk. This article is protected by copyright. All rights reserved.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38589590

RESUMO

Numerous low-income groups and rural communities depend on fish as an inexpensive protein source worldwide, especially in developing countries. These communities are constantly exposed to various pollutants when they frequently consume polluted fish. The largest river basin in South Africa is the Orange-Vaal River basin, and several anthropogenic impacts, especially gold mining activities and industrial and urban effluents, affect this basin. The Department of Environment, Forestry and Fisheries in South Africa has approved the much-anticipated National Freshwater (Inland) Wild Capture Fisheries Policy in 2021. The aims of this study were (1) to analyze element concentrations in the widely distributed Clarias gariepinus from six sites from the Orange-Vaal River basin and (2) to determine the carcinogenic and non-carcinogenic human health risks associated with fish consumption. The bioaccumulation of eight potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) was assessed in C. gariepinus from sites with different anthropogenic sources. The human health risks were determined to assess the potential risks posed by consuming contaminated C. gariepinus from these sites. Carcinogenic health risks were associated with fish consumption, where it ranged between 21 and 75 out of 10,000 people having the probability to develop cancer from As exposure. The cancer risk between the sites ranged between 1 and 7 out of 10,000 people to developing cancer from Cr exposure. A high probability of adverse non-carcinogenic health risks is expected if the hazard quotient (HQ) is higher than one. The HQ in C. gariepinus from the six sites ranged between 1.5 and 5.6 for As, while for Hg, it was between 1.8 and 5.1. These results highlight the need for monitoring programs of toxic pollutants in major river systems and impoundments in South Africa, especially with the new fisheries policy, as there are possible human health risks associated with the consumption of contaminated fish.

8.
J Contam Hydrol ; 264: 104344, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643620

RESUMO

Groundwater is crucial for agriculture and domestic consumption. This research investigated the hydrogeochemical properties and contaminant sources of groundwater within the mountainous terrain of northern Chongqing, with the objective of evaluating its appropriateness for irrigation and potable use. The hydrochemical type of the groundwater was HCO3 - Ca, dominated by silicate and calcite dissolutions. High NO3- (29.03% exceeds 10 mg/L) were attributed to the overuse of agricultural fertilizers. A comprehensive evaluation was conducted to determine the groundwater suitability for agricultural and potable uses. The results showed that groundwater in the southwestern region, particularly within the Yangtze River mainstem watershed, exhibited less suitability for irrigation owing to its lower mineralization, in contrast to the northeastern region near the Daning River watershed. But this trend is reversed for drinking purposes. Overall, the groundwater was appropriate for both drinking (93.55% were classified as excellent) and irrigation (70.98% were classified as low restriction) purposes in the study area. Deterministic and probabilistic noncarcinogenic health risk analyses centered on nitrate exposure revealed that infants (with 13.79% of samples >1) were at greater risk than children (8.58%), adult males (6.98%), and adult females (5.24%). This underscores the urgency to reduce nitrogen fertilizer usage and improve water management in the region. This research will provide guidance for the sustainable groundwater management in mountainous regions.

9.
Environ Res ; : 118968, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643820

RESUMO

The widespread application of rare earth elements (REEs) in contemporary industries and agriculture, has caused emerging contaminant accumulation in aquatic environments. However, there is a limited scope of risk assessments, particularly in relation to human health associated with REEs. This study investigated the provenance, and contamination levels of REEs, further evaluating their environmental and human health risks in river sediments from an agricultural basin. The concentrations of REEs ranged from 30.5 to 347.7mg/kg, with showing an upward trend from headwater to downstream. The positive matrix factorization (PMF) model identified natural and anthropogenic input, especially from agricultural activities, as the primary sources of REE in Mun River sediments. The contamination assessment by geoaccumulation index (I-geo) and pollution load index (PLI) confirmed that almost individual REEs in the samples were slight to moderately polluted. The potential ecological risk index (PERI) showed mild to moderate risks in Mun River sediment. Regular fertilization poses pollution and ecological risks to agricultural areas, manifesting as an enrichment of light REEs in river sediments. Nevertheless, Monte Carlo simulations estimated the average daily doses of total REEs from sediments to be 0.24 µg/kg/day for adults and 0.95 µg/kg/day for children, comfortably below established human health thresholds. However, the risk of REE exposure appears to be higher in children, and sensitivity analyses suggested that REE concentration contributed more to health risks, whether the adults or children. Thus, concerns regarding REE contamination and risks should be raised considering the wide distribution of agricultural regions, and further attention is warranted to assess the health risks associated with other routes of REE exposure.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38625466

RESUMO

Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.

11.
Environ Manage ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573351

RESUMO

Artisanal mining is intensely carried out in developing countries, including Brazil and especially in the Amazon. This method of mineral exploration generally does not employ mitigation techniques for potential damages and can lead to various environmental problems and risks to human health. The objectives of this study were to quantify the concentrations of rare earth elements (REEs) and estimate the environmental and human health risks in cassiterite and monazite artisanal mining areas in the southeastern Amazon, as well as to understand the dynamics of this risk over time after exploitation. A total of 35 samples of wastes classified as overburden and tailings in active areas, as well as in areas deactivated for one and ten years were collected. Samples were also collected in a forest area considered as a reference site. The concentrations of REEs were quantified using alkaline fusion and ICP-MS. The results were used to calculate pollution indices and environmental and human health risks. REEs showed higher concentrations in anthropized areas. Pollution and environmental risk levels were higher in areas deactivated for one year, with considerable contamination factors for Gd and Sm and significant to extreme enrichment factors for Sc. Human health risks were low (< 1) in all studied areas. The results indicate that artisanal mining of cassiterite and monazite has the potential to promote contamination and enrichment by REEs.

12.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611284

RESUMO

Heavy metals (HMs) are natural elements present in the Earth's crust, characterised by a high atomic mass and a density more than five times higher than water. Despite their origin from natural sources, extensive usage and processing of raw materials and their presence as silent poisons in our daily products and diets have drastically altered their biochemical balance, making them a threat to the environment and human health. Particularly, the food chain polluted with toxic metals represents a crucial route of human exposure. Therefore, the impact of HMs on human health has become a matter of concern because of the severe chronic effects induced by their excessive levels in the human body. Chelation therapy is an approved valid treatment for HM poisoning; however, despite the efficacy demonstrated by chelating agents, various dramatic side effects may occur. Numerous data demonstrate that dietary components and phytoantioxidants play a significant role in preventing or reducing the damage induced by HMs. This review summarises the role of various phytochemicals, plant and herbal extracts or probiotics in promoting human health by mitigating the toxic effects of different HMs.

13.
Foods ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611326

RESUMO

The consumption of plant-based diets has become a burgeoning trend, and they are increasingly consumed globally owing to their substantial energy intensity and dietetic advantages. Plants possess numerous bioactive components that have been recognized to exhibit manifold health-promoting assets. Comprehension of the synthesis of these primary and secondary metabolites by plants and their method of action against several chronic illnesses is a significant requirement for understanding their benefits to human health and disease prevention. Furthermore, the association of biologically active complexes with plants, humans, disease, medicine, and the underlying mechanisms is unexplored. Therefore, this review portrays various bioactive components derived from plant sources associated with health-promoting traits and their action mechanisms. This review paper predominantly assembles proposed plant-derived bioactive compounds, postulating valuable evidence aimed at perceiving forthcoming approaches, including the selection of potent bioactive components for formulating functional diets that are effective against several human disorders. This meticulous evidence could perhaps provide the basis for the advanced preemptive and therapeutic potential promoting human health. Hence, delivery opens possibilities for purchasers to approach the lucrative practice of plants as a remedy, produce novel products, and access new marketplaces.

14.
Foods ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611389

RESUMO

Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.

15.
Environ Int ; 186: 108617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599027

RESUMO

Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.


Assuntos
Microplásticos , Nanopartículas , Toxicocinética , Humanos , Microplásticos/toxicidade , Medição de Risco , Nanopartículas/química , Nanopartículas/toxicidade , Exposição Ambiental , Modelos Biológicos , Distribuição Tecidual , Tamanho da Partícula
16.
Front Chem ; 12: 1367395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606081

RESUMO

Strontium (Sr), a trace element with a long history and a significant presence in the Earth's crust, plays a critical yet often overlooked role in various biological processes affecting human health. This comprehensive review explores the multifaceted implications of Sr, especially in the context of non-communicable diseases (NCDs) such as cardiovascular diseases, osteoporosis, hypertension, and diabetes mellitus. Sr is predominantly acquired through diet and water and has shown promise as a clinical marker for calcium absorption studies. It contributes to the mitigation of several NCDs by inhibiting oxidative stress, showcasing antioxidant properties, and suppressing inflammatory cytokines. The review delves deep into the mechanisms through which Sr interacts with human physiology, emphasizing its uptake, metabolism, and potential to prevent chronic conditions. Despite its apparent benefits in managing bone fractures, hypertension, and diabetes, current research on Sr's role in human health is not exhaustive. The review underscores the need for more comprehensive studies to solidify Sr's beneficial associations and address the gaps in understanding Sr intake and its optimal levels for human health.

17.
Heliyon ; 10(7): e29128, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623208

RESUMO

Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.

18.
Heliyon ; 10(8): e28361, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628751

RESUMO

Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.

19.
Virus Res ; 344: 199367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561065

RESUMO

Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.


Assuntos
Infecções por Coxsackievirus , Genótipo , Humanos , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/epidemiologia , Saúde Global , Enterovirus/genética , Enterovirus/classificação , Enterovirus/patogenicidade
20.
Chemosphere ; 357: 142028, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621494

RESUMO

Nickel (Ni) contamination poses a serious environmental concern, particularly in developing countries: where, anthropogenic activities significantly contributes to Ni accumulations in soils and waters. The contamination of agricultural soils with Ni, increases risks of its entry to terrestrial ecosystems and food production systems posing a threat to both food security and safety. We examined the existing published articles regarding the origin, source, accumulation, and transport of Ni in soil environments. Particularly, we reviewed the bioavailability and toxic effects of Ni to soil invertebrates and microbes, as well as its impact on soil-plant interactions including seed germination, nutrient uptake, photosynthesis, oxidative stress, antioxidant enzyme activity, and biomass production. Moreover, it underscores the potential health hazards associated with consuming crops cultivated in Ni-contaminated soils and elucidates the pathways through which Ni enters the food chain. The published literature suggests that chronic Ni exposure may have long-term implications for the food supply chain and the health of the public. Therefore, an aggressive effort is required for interdisciplinary collaboration for assessing and mitigating the ecological and health risks associated with Ni contamination. It also argues that these measures are necessary in light of the increasing level of Ni pollution in soil ecosystems and the potential impacts on public health and the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...